Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: successful in silico prediction of the relative permeabilities of cyclic peptides.
نویسندگان
چکیده
We report an atomistic physical model for the passive membrane permeability of cyclic peptides. The computational modeling was performed in advance of the experiments and did not involve the use of "training data". The model explicitly treats the conformational flexibility of the peptides by extensive conformational sampling in low (membrane) and high (water) dielectric environments. The passive membrane permeabilities of 11 cyclic peptides were obtained experimentally using a parallel artificial membrane permeability assay (PAMPA) and showed a linear correlation with the computational results with R(2) = 0.96. In general, the results support the hypothesis, already well established in the literature, that the ability to form internal hydrogen bonds is critical for passive membrane permeability and can be the distinguishing factor among closely related compounds, such as those studied here. However, we have found that the number of internal hydrogen bonds that can form in the membrane and the solvent-exposed polar surface area correlate more poorly with PAMPA permeability than our model, which quantitatively estimates the solvation free energy losses upon moving from high-dielectric water to the low-dielectric interior of a membrane.
منابع مشابه
An Estimation of Multiphase Relative Permeabilities in Reservoir Cores from Micro-CT Data
With significant increase of tomographic equipment power, demand for Prediction relative permeability prediction Predicting in porous media from digital image data. In this work, it is predicted three -phase relative permeabilities with co-applying Darcy’s and Stokes equations in two case studies, namely Bentheimer sandstone and Estaillades limestone which their micro-CT data files were downloa...
متن کاملOn-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds
Backbone N-methylation is common among peptide natural products and has a substantial impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides ...
متن کاملCell-permeable cyclic peptides from synthetic libraries inspired by natural products.
Drug design efforts are turning to a new generation of therapeutic targets, such as protein-protein interactions (PPIs), that had previously been considered "undruggable" by typical small molecules. There is an emerging view that accessing these targets will require molecules that are larger and more complex than typical small molecule drugs. Here, we present a methodology for the discovery of ...
متن کاملStudies of Hydrogen Bonding Effects on DiPalmitoyl Phosphatidyl Etanolamine (DPPE) by theoretical Methods
Hydrogen bonding of DPPE with water that surrounded of membrane, plays an important role in permeability ofmembrane that we were presented this matter with analysis of bond angles and torsion angles before and after ofadded water molecules.Interaction with water molecules causes some changes in the geometry of DPPE which were explained bythe contribution of zwitterionic form of DPPE molecule, a...
متن کاملIn silico prediction of anticancer peptides by TRAINER tool
Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 128 43 شماره
صفحات -
تاریخ انتشار 2006